Fuzzy set approaches to classification of rock masses
نویسنده
چکیده
Rock mass classification is analogous to multi-feature pattern recognition problem. The objective is to assign a rock mass to one of the pre-defined classes using a given set of criteria. This process involves a number of subjective uncertainties stemming from: (a) qualitative (linguistic) criteria; (b) sharp class boundaries; (c) fixed rating (or weight) scales; and (d) variable input reliability. Fuzzy set theory enables a soft approach to account for these uncertainties by allowing the expert to participate in this process in several ways. Hence, this study was designed to investigate the earlier fuzzy rock mass classification attempts and to devise improved methodologies to utilize the theory more accurately and efficiently. As in the earlier studies, the Rock Mass Rating (RMR) system was adopted as a reference conventional classification system because of its simple linear aggregation. The proposed classification approach is based on the concept of partial fuzzy sets representing the variable importance or recognition power of each criterion in the universal domain of rock mass quality. The method enables one to evaluate rock mass quality using any set of criteria, and it is easy to implement. To reduce uncertainties due to projectand lithologydependent variations, partial membership functions were formulated considering shallow ( < 200 m) tunneling in granitic rock masses. This facilitated a detailed expression of the variations in the classification power of each criterion along the corresponding universal domains. The binary relationship tables generated using these functions were processed not to derive a single class but rather to plot criterion contribution trends (stacked area graphs) and belief surface contours, which proved to be very satisfactory in difficult decision situations. Four input scenarios were selected to demonstrate the efficiency of the proposed approach in different situations and with reference to the earlier approaches. D 2004 Elsevier B.V. All rights reserved.
منابع مشابه
A hybridization of evolutionary fuzzy systems and ant Colony optimization for intrusion detection
A hybrid approach for intrusion detection in computer networks is presented in this paper. The proposed approach combines an evolutionary-based fuzzy system with an Ant Colony Optimization procedure to generate high-quality fuzzy-classification rules. We applied our hybrid learning approach to network security and validated it using the DARPA KDD-Cup99 benchmark data set. The results indicate t...
متن کاملPrediction of the deformation modulus of rock masses using Artificial Neural Networks and Regression methods
Static deformation modulus is recognized as one of the most important parameters governing the behavior of rock masses. Predictive models for the mechanical properties of rock masses have been used in rock engineering because direct measurement of the properties is difficult due to time and cost constraints. In this method the deformation modulus is estimated indirectly from classification syst...
متن کاملProposing a Novel Cost Sensitive Imbalanced Classification Method based on Hybrid of New Fuzzy Cost Assigning Approaches, Fuzzy Clustering and Evolutionary Algorithms
In this paper, a new hybrid methodology is introduced to design a cost-sensitive fuzzy rule-based classification system. A novel cost metric is proposed based on the combination of three different concepts: Entropy, Gini index and DKM criterion. In order to calculate the effective cost of patterns, a hybrid of fuzzy c-means clustering and particle swarm optimization algorithm is utilized. This ...
متن کاملA hybrid filter-based feature selection method via hesitant fuzzy and rough sets concepts
High dimensional microarray datasets are difficult to classify since they have many features with small number ofinstances and imbalanced distribution of classes. This paper proposes a filter-based feature selection method to improvethe classification performance of microarray datasets by selecting the significant features. Combining the concepts ofrough sets, weighted rough set, fuzzy rough se...
متن کاملEfficiency of seismic wave velocity and electrical resistivity in estimation of limestone rock mass quality indices (Q, Qsrm) (Case study: Asmari formation, SW Iran)
In this research, the relationship between P-wave velocity (Vp) and Electrical Resistivity (ER) parameters with rock mass quality indices is investigated; parameters such as rock mass quality classification (Q) and modified system for sedimentary rocks, known as Qsrm. For making predictive models, about 1200 data-sets extracted from sections drilled in Seymareh and Karun 2 Dam Sites (SDS and KD...
متن کامل